
evs

The 30th International **Electric Vehicle Symposium & Exhibition**

October 9-11, 2017 Messe Stuttgart, Germany

www.evs30.org

Sponsored by

Mobility from renewable electricity

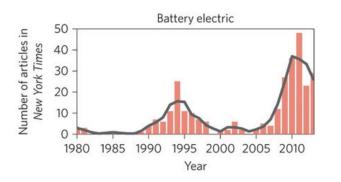
Infrastructure comparison for battery and hydrogen fuel cell vehicles Energy footprint from Grid to Mobility

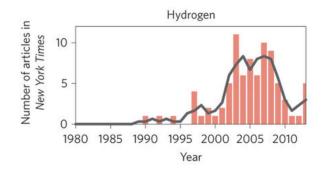
Yorick Ligen

Laboratory of Physical and Analytical Electrochemistry, EPFL, Switzerland

Head: Prof. H. Girault

Agenda




- Electric mobility and renewable energy sources
- Grid to mobility conversion pathways
- EV comparison results

3rd wave of electric mobility

Media attention for alternative fuel vehicle technology for 1980-2013

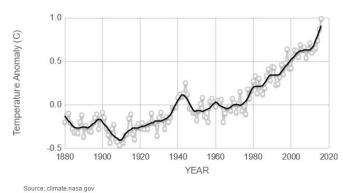
N. Melton, J. Axsen, and D. Sperling, "Moving beyond alternative fuel hype to decarbonize transportation," *Nature Energy*, vol. 1, p. 16013, Feb. 2016.

Battery or Hydrogen ?

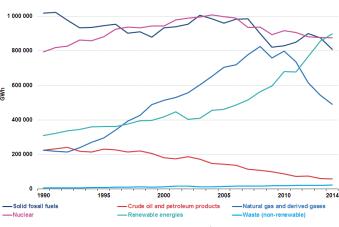
«Does a Hydrogen economy make sense?
Never.»
Ulf Bossel, 2006

«Hydrogen cars are incredibly dumb» Elon Musk, 2015

«We don't see any battery technology that would allow us to give customers a comparable driving experience»
Toyota Executive, 2015 *«Electric vehicles powered by fuel cells offer the best conditions»*Alexander Dobrindt, German Minister of Transport, 2015


Standardization

- SAE J1772 incorporated DC charging in 2012
- SAE J2601 70 Mpa refueling protocoll, first version in 2010



Full benefits of electric mobility

- CO2 emission reduction (Global warming issue)
- Local pollution reduction (Air quality and noise issues)
- Energy independence and **renewable electricity integration**

Source: www.ec.europa.eu/eurostat

Role of a refilling station

- Provide range to customers, deliver a "mobility service"
 - Storing and distributing energy carrier

Vehicle		BEV	FCEV	ICEV Conventional refilling station		
Charging mode	Home outlet (16-32 A)	Fast charger	HRS			
Energy carrier flowrate	2 to 6 kW	50 kW up to 150 kW	Up to 2 kg·min⁻¹	35 L·min⁻¹		
Autonomy flowrate	0.2 − 0.6 km·min ⁻¹	3-5 km·min ⁻¹ (50 kW) 9-15 km·min ⁻¹ (150 kW)	160-220 km·min ⁻¹	370-430 km·min ⁻¹		

Role of a refilling station

- Provide range to customers, deliver a "mobility service"
 - Storing and distributing energy carrier

Vehicle		BEV	FCEV	ICEV Conventional refilling station		
Charging mode	Home outlet (16-32 A)	Fast charger	HRS			
Energy carrier flowrate	2 to 6 kW	50 kW up to 150 kW	Up to 2 kg·min⁻¹	35 L·min⁻¹		
Autonomy flowrate	0.2 − 0.6 km·min ⁻¹	3-5 km·min ⁻¹ (50 kW) 9-15 km·min ⁻¹ (150 kW)	160-220 km·min ⁻¹	370-430 km·min ⁻¹		

Smart charging

Scaling infrastructure

- 33 000 km of autonomy delivered (gasoline only) per station per day (double on highways) in CH
- \rightarrow @ 3-5 km·min⁻¹ (50 kW) \rightarrow 10 plugs occupied all day long. Smart charging \rightarrow Smart station

Geiselwind, first HRS on the Autobahn and multistall fast charger

Sources:

Scaling infrastructure

- 33 000 km of autonomy delivered (gasoline only) per station per day (double on highways) in CH
- \rightarrow 330 kg of H₂ per day

Typ M - Medium

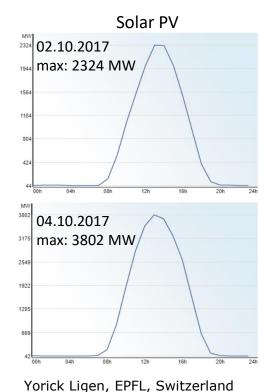
2 Zapfpunkte

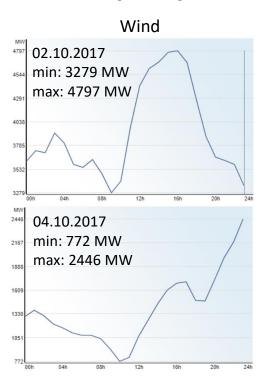
6 Betankungen pro Position und Stunde, 2 back-to-back-Betankung⁴ pro Position; max. 5 min Wartezeit

Stationäre Lösung

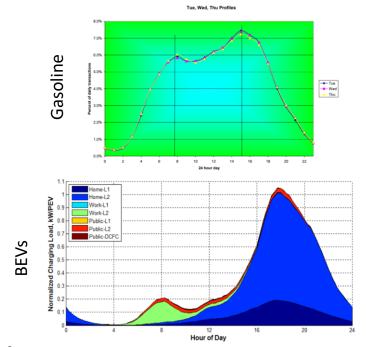
Option zur modularen Erweiterung

Durchschn. 60 Betankungen pro Tag (336 kg/d)


Maximalumsatz 420 kg H₂ pro Tag


Sources:

Union Pétrolière Suisse, Rapport annuel 2015 Wasserstoff Infrastruktur für eine nachhaltige Mobilität, e-mobil BW 2013



Matching production and consumption profiles

Fueling profiles

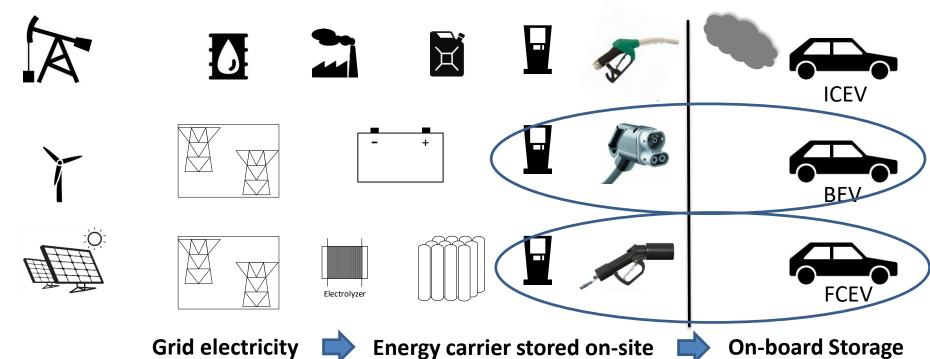
Sources:

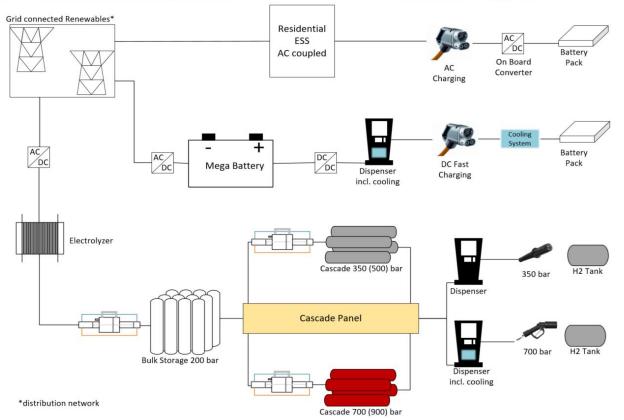
Hydrogen Delivery Infrastructure Options Analysis, DOE, 2014 National Plug-In Electric Vehicle Infrastructure Analysis, DOE 2017

Matching production and consumption profiles: energy buffers

- FCEVs: variable load electrolysis
- BEVs: mega batteries and smart charging

- Grid services as side benefits:
 - Load levelling
 - Peak shaving
 - Arbitrage
 - Increase autoconsumption

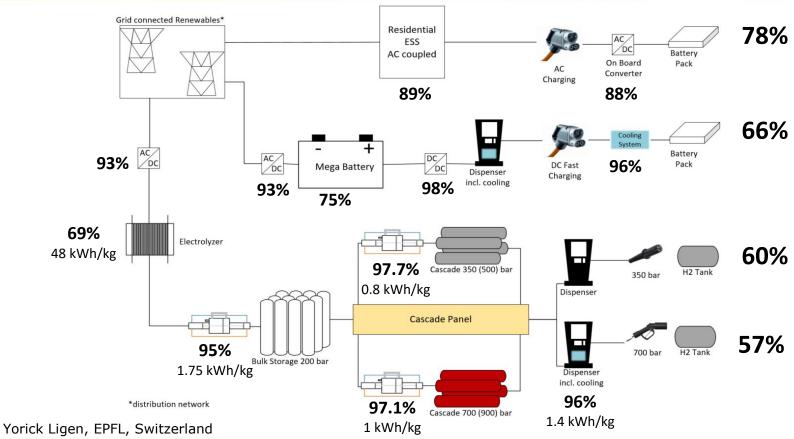




Refilling events: A significant role in energy efficiency

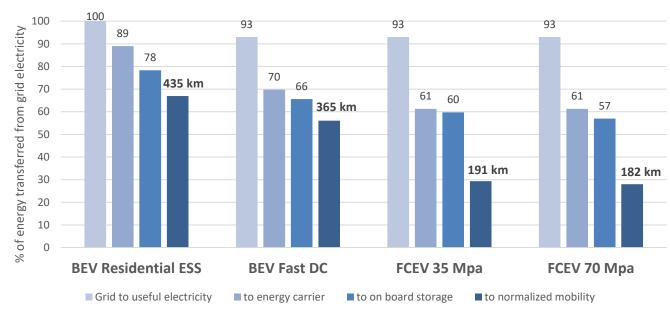
Empirical data and technical reviews: INL Vehicle Testing, CEP, NREL, UC Irvine...

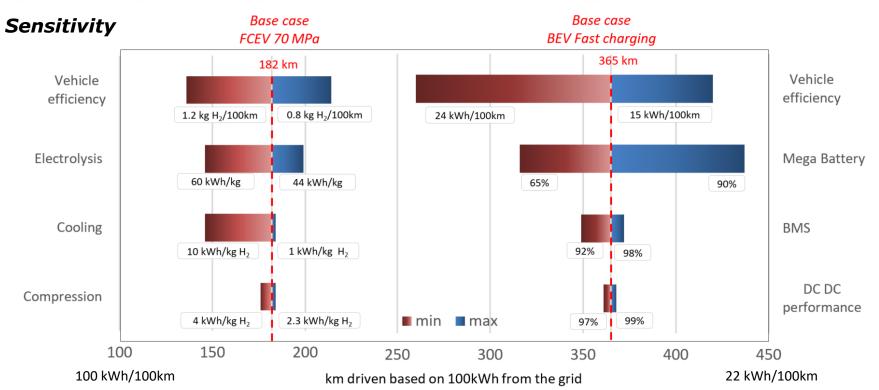
Datasheets: LG Chem, Linde, Tesla Powerwall, EVTEC...


How to assess the energetic performance of refilling stations?

Driver perspective : kWh/100km

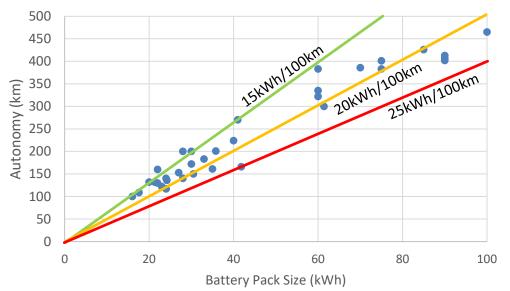
Operator perspective : km/100kWh, energy cost to deliver a mobility service




From on board storage	18 kWh/100km	18 kWh/100km	31 kWh/100km	31 kWh/100km
From on site storage	20 kWh/100km	19 kWh/100km	32 kWh/100km	33 kWh/100km
From the Grid	23 kWh/100km	27 kWh/100km	52 kWh/100km	55 kWh/100km

Yorick Ligen, EPFL, Switzerland

EV comparison results



EV comparison results

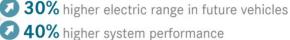
Discussion

- Range versus efficiency, winter conditions
- For FCEVs: limited set of vehicles on the market,
 not the same segment coverage

Temperature adjustment factor for energy consumption of BEVs

		Ambient Temperature, °C												
		-20	-15	-10	-5	0	5	10	15	20	25	30	35	40
Trip Avg Speed, mph	2.5	203%	193%	186%	178%	167%	154%	141%	132%	129%	136%	153%	180%	213%
	7.5	177%	168%	162%	155%	146%	135%	123%	115%	113%	119%	134%	157%	186%
	12.5	163%	155%	149%	143%	134%	124%	114%	106%	104%	109%	123%	145%	171%
	17.5	146%	139%	134%	128%	121%	111%	102%	95%	93%	98%	110%	130%	153%
	22.5	135%	128%	123%	118%	111%	102%	94%	88%	86%	90%	102%	120%	141%
	27.5	132%	125%	120%	115%	108%	100%	92%	85%	84%	88%	99%	117%	138%
	32.5	135%	128%	123%	118%	111%	102%	94%	88%	86%	90%	102%	120%	141%
	37.5	141%	134%	129%	124%	116%	107%	98%	92%	90%	94%	106%	125%	147%
	42.5	147%	139%	134%	129%	121%	111%	102%	95%	93%	98%	111%	130%	154%
	47.5	155%	147%	142%	136%	128%	118%	108%	101%	99%	104%	117%	138%	163%
	52.5	164%	156%	150%	144%	135%	125%	114%	107%	104%	110%	124%	146%	172%
	57.5	168%	159%	154%	147%	139%	128%	117%	109%	107%	113%	127%	149%	176%
	62.5	182%	172%	166%	159%	150%	138%	126%	118%	115%	121%	137%	161%	190%

Sources:


National Plug-In Electric Vehicle Infrastructure Analysis, DOE 2017 U.S. Environmental Protection Agency, www.fueleconomy.gov

To be continued...

- 350 kW: water cooled cables
- Charging patterns home/fast chargers
- MW scale batteries, MW scale electrolysers: centralized or decentralized ?
- FCEV technology improvements
 - Hyundai (ix35 Fuel Cell 2013 // FE Concept 2018)
 55.3% → 60% fuel cell efficiency (+9% in 5 years)
 - Toyota (FCHV-adv 2008 // Mirai 2015)
 1.4 kW/L & 0.83 kW/kg → 3.1 kW/L & 2.0 kW/kg
 - Mercedes (B Class 2010 // GLC Fuel Cell 2017)

Conclusion

Significant role of infrastructure in the overall picture

- On-site energy carrier production and storage (electrolysis, mega batteries)
- Energy carrier conditionning and distribution (compression, power electronics, cooling)

On-board components play an active role in charging efficiency

Not assessed with driving cycles and lack of transparency from car manufacturers

How to consider non mobility services of electric mobility

- Provided by the vehicles (heat recovery in FCEVs)
- Or by the stations (heat recovery from compression, grid services)
- Optimization target: Efficiency ? Flexibility ? Costs ? Rare material consumption ?

Acknowledgments

Swiss Federal Office for Energy, City of Martigny, Prof. H. Girault, Dr. H. Vrubel, Dr. V. Amstutz

